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ring-opening and chiral base desymmetrisation of

a cyclic sulfate intermediate
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Abstract—A number of new functionalised bridged indolocarbazole systems have been prepared by ring-opening reactions of a key
cyclic sulfate intermediate, prepared from the corresponding diol by the action of sulfuryl diimidazole and DBU. The same cyclic
sulfate also undergoes an unprecedented asymmetric rearrangement to a chiral ketone, on treatment with a chiral lithium amide
base.
� 2004 Elsevier Ltd. All rights reserved.
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In a previous report we described the synthesis of a
small group of bridged indolocarbazoles, including alk-
ene 1 and a-hydroxyester 2 (Eq. 1),1 which are related to
the natural product K252a 3,2 but which incorporate
unnatural replacements to both the single atom bridge
(i.e., they are carbocyclic analogues) and the fused lac-
tam function.
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The meso-alkene 1 was available in quantity from very
simple starting materials and provided ready access to
the K252a analogue 2, the N–H imide variant of which
(2 R = H) was found to show very promising kinase
inhibitory activity.3 In planning further exploration of
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such analogues we decided that compounds derived
from alkene 1, but incorporating vicinal heteroatom
functions, as found in staurosporine 4,2 would be inter-
esting hybrid systems. An additional aim was to gener-
ate some of the key analogues, such as 2, in
non-racemic form through a desymmetrisation of alkene
1 or some derivative. Here we describe progress in both
of these areas, which has uncovered some new and novel
transformations, including a new chiral base-mediated
rearrangement.

The rather poor solubility characteristics of indolo-
carbazoles makes them challenging substrates for
many types of reactions, especially if low temperatures
are usually employed. Our initial efforts to effect new
transformations of alkene 1 focused on epoxide genera-
tion, with the imide nitrogen protected as N–Bn or N–
PMB. Epoxide generation using peracids proved very
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problematic (ca. 17–19% typical yield), DMDO gave a
maximum yield of 47% with 1 R = PMB, but the reac-
tion proved capricious, and complementary approaches
via bromohydrin formation also proved ineffective.
Experiments involving epoxide opening, using the mod-
est supplies available from the DMDO reaction, were
also discouraging, with azide (normally an excellent
nucleophile for epoxide opening) giving azidoalcohol
products in only very modest yields.

These problems led us to develop a complementary
approach, which relies on the sequence of alkene dihydr-
oxylation, cyclic sulfate formation and nucleophilic ring
opening (Scheme 1).

In contrast to the problematic epoxidation reactions,
dihydroxylation of alkene 1 at room temperature in
THF was very efficient.4 Cyclic sulfate synthesis by the
usual approach of forming the corresponding cyclic sulf-
ite with SOCl2 and then oxidation with the Sharpless in
situ RuO4 acetonitrile–water system proved low-yielding
due to problems with the second step.5 Instead, and
after considerable experimentation, we found that reac-
tion of the diol 5 with sulfuryl diimidazole with DBU as
base gave the desired sulfate directly and in excellent
yield. This combination proved uniquely effective in
our system, and may be useful in a more general sense.6

Ring opening of the cyclic sulfate 6 was then carried out
under various conditions to give a range of products
7a–e in which interesting vicinal functionality had been
installed.7 The reaction of 6 with azide attested to the
excellent activating properties of the cyclic sulfate, since
PMB
N

NN

OO
PMB
N

NN

O

HO OH

5

PMB
N

NN

OO

X OH

1

7a-e

(i)

95%

(iii)

re

NaN3

morp

PhCO

PhSH

NH4S

Scheme 1. Reagents and conditions: (i) OsO4, NMO, THF; (ii) Im2SO2, DB
the ring opening occurred in high yield under conditions
which left the corresponding epoxide unreacted. The
direct installation of amine groups still proved difficult,
the modest yield obtained by reaction of 6 in neat
morpholine at reflux being one of the best results.8 In
contrast, reaction with oxygen or sulfur centred nucleo-
philes was relatively straightforward.

Given the apparent importance of the nitrogen function-
ality in bioactive systems such as staurosporine, we were
pleased to demonstrate that the azide function present in
7a could enable access to diverse nitrogen containing
products, such as 8–10 in straightforward fashion.
Thus, azide reduction, to give the potentially versatile
primary amine 8, was possible under several types of
typical hydrogenation conditions, the imide N–PMB
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, DMF, 80 oC N3 7a (91%)

holine, reflux N O 7b (36%)

2NH4, DMF, 70 oC OCOPh 7c (88%)

, NaH, THF, RT SPh 7d (91%)

CN, DMF, 70 oC SCN 7e (64%)

U, THF; (iii) see table; then 20% H2SO4, THF.
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being unaffected. Although amine 8 may prove useful in
reductive alkylation sequences, we also gained access to
diallyl amine 9 by means of the indium mediated Barbier
type process described by Yadav et al.9 Azide cycloaddi-
tion using dimethyl acetylenedicarboxylate as reaction
partner, one of the processes highlighted by Sharpless
in his �click chemistry� approach,10 was also effective,
leading to triazole 10 in very high yield.

Whilst exploring the ring opening chemistry of cyclic
sulfate 6 we were attracted to a little-known transforma-
tion involving base-mediated rearrangement of a cyclic
sulfate to a ketonic product. This is exemplified by the
reaction of the cyclitol derived cyclic sulfate 11 to give
the ketone 12, described by Fernández-Mayoralas and
co-workers11 (Scheme 2).

These authors proposed a b-elimination process to give
an intermediate vinyl bisulfate, which on acidification
gave the ketone product.12 Unfortunately, application
of these conditions to our cyclic sulfate 6 gave only very
modest yields (8%) of the desired ketone 13 (which was
an important intermediate in the formation of hydroxy-
ester 2) (Scheme 3).

Similarly, the use of LDA at low temperature also gave
very modest (ca. 5%) yields of the desired ketone, and
recovery of starting sulfate or the corresponding diol 5
predominated. Our main motivation for persisting with
this transformation was the hope that an asymmetric
variant might enable access to ketone 13 in non-racemic
form. Therefore chiral alkoxides, such as metal salts of
ephedrine derivatives were explored briefly, but to no
effect.13 Finally, we found that chiral lithium amide base
14 provided some more encouraging preliminary
results.14 Thus, addition of cyclic sulfate 6 to a solution
of lithium amide 14 and LiCl (4equiv) at �78 �C pro-
vided a 39% yield of ketone 13, following acidification.15

The enantiomeric excess of the ketone was established
by HPLC to be 87%, and the absolute configuration
was tentatively assigned as shown in Scheme 3 by corre-
lation with material obtained via asymmetric hydrobor-
ation of alkene 1.16 Unfortunately, preliminary reaction
screening has failed to uncover conditions under which
higher yields of ketone 13 can be obtained, and we have
not yet been able to test additional cyclic sulfate
substrates.

The chiral base transformation of 6 to give ketone 13 is
the first example of its type for cyclic sulfates, although
the chemistry is clearly related to the analogous trans-
formation of certain epoxides.17 Further study is
required to delineate the scope, limitations and likely
mechanism of the process.

We are in the process of further modifying the indo-
locarbazoles described here, and initial screening results
show the corresponding deprotected imides (i.e., imide
N–H series) to be potent kinase inhibitors. Full details
of this work will be reported in due course.
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